Partitioning Random Graphs into Monochromatic Components

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partitioning Random Graphs into Monochromatic Components

Erdős, Gyárfás, and Pyber (1991) conjectured that every r-colored complete graph can be partitioned into at most r − 1 monochromatic components; this is a strengthening of a conjecture of Lovász (1975) and Ryser (1970) in which the components are only required to form a cover. An important partial result of Haxell and Kohayakawa (1995) shows that a partition into r monochromatic components is p...

متن کامل

Partitioning graphs into balanced components

We consider the k-balanced partitioning problem, where the goal is to partition the vertices of an input graph G into k equally sized components, while minimizing the total weight of the edges connecting different components. We allow k to be part of the input and denote the cardinality of the vertex set by n. This problem is a natural and important generalization of well-known graph partitioni...

متن کامل

Partitioning two-coloured complete multipartite graphs into monochromatic paths

We show that any complete k-partite graph G on n vertices, with k ≥ 3, whose edges are two-coloured, can be covered by two vertex-disjoint monochromatic paths of distinct colours, under the necessary assumption that the largest partition class of G contains at most n/2 vertices. This extends known results for complete and complete bipartite graphs. Secondly, we show that in the same situation, ...

متن کامل

Partitioning edge-coloured complete graphs into monochromatic cycles and paths

A conjecture of Erdős, Gyárfás, and Pyber says that in any edge-colouring of a complete graph with r colours, it is possible to cover all the vertices with r vertexdisjoint monochromatic cycles. So far, this conjecture has been proven only for r = 2. In this paper we show that in fact this conjecture is false for all r ≥ 3. In contrast to this, we show that in any edge-colouring of a complete g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Electronic Journal of Combinatorics

سال: 2017

ISSN: 1077-8926

DOI: 10.37236/6089